Las Trancas Bridge Project

Trancas Associates Charlie Butler, Nathan Ecker, Aaron Jessmore, Xi Zhu Michigan Technological University - International Senior Design CE4915 / CE4916 - Summer / Fall 2016 December 16, 2016

Outline

- Community Overview
- Current Conditions of Roadway and Project Site
- Data Acquisition and Analysis
- Design Constraints and Alternatives
- Final Design Selection and Detailing
- Cost Estimate and Project Schedule

Comarca Ngäbe-Buglé

Las Trancas Location & Transportation Routes

(via Google Maps)

Poor Road Conditions

Steep Road Grades

Previous Bridge Attempts

Current Conditions

Ford Crossing

Las Trancas Center

Las Trancas Community

Site Layout

Site Surveying

Contour Map

Soil Conditions

Soil Classification

- Brown red fat clay
- High Plasticity
- CH on ASTM Scale

Summary of Design Constraints

- Remote Location
- Poor Road Conditions
- Steep Elevations
- Budget
- Hydrology
- Soil Conditions

Design Alternatives

Steel Truss

Box Culvert

Wood Truss

Final Design

Flexible Steel Buried Bridge

- Reduces Live Loads
- Spread footings
- Natural river bottom
- Lightweight materials
- Low maintenance

"Bridge-Plate Replaced Distressed Bridge While Keeping Highway Open." Armtec. Armtec, n.d. Web. 07 Dec. 2016.

Manko, Z.; Beben, D. 2008. Dynamic testing of a corrugated steel arch bridge, Canadian Journal of Civil Engineering 35(3): 246–257. DOI: 10.1139/L07-098 McCavour, T. C.; Byrne, P. M.; Morrison, T. D. 1998. Long span reinforced steel box culverts, Transportation Research Record 1624:184–195. DOI: 10.3141/1624-22

Solutions, Contech Engineered. "Aluminum Box Culvert." Aluminum Box Culvert - Contech Engineered Solutions. Contech, n.d. Web. 07 Dec. 2016.

Hydrology - Watershed

- 0.33 mi² approximated watershed area
- ~ 4300' channel length leading into the site location
- NRCS Peak Discharge Method was used:
- ➤ Runoff Curve Number: 83

Hydrology - Stream Channel Slope

• 5% Channel Slope

Hydrology - Hydrograph

Hydrograph due to runoff through channel at project location

 280 ft³/s Max Flow Rate

Riprap Placement

- Plan view of Riprap Placement
- Riprap to be Placed at 3:1 along River Channel

Max River Height: 30" Max Velocity of 8.4 ft^3/s

Crown Plate and Footing on 3D model

Footing Design

Bridge Dimensions

Bridge Plates

Crown Plate Dimensions

Headwall Plate on 3D Model

Gravel Placement

- 18 ft Road Width
- Minimum 2 ft of Gravel Cover
- Masonry Wall to Contain Gravel

- 1 in Crushed, Angular Gravel
- 6" 8" Lifts and Compacted to 90%
- Vertical Road Grades of 16% and 20%

Masonry Wing Walls

Steel Headwall

Connection A rods run to opposite side Headwall. Connection B & C rods connect to Crown Plate

Cost Estimation and Project Schedule

Task Name	Duration	Start	Finish	Predecessors	January 2017 February 2017 March 2017 1 4 7 10 13 16 19 22 25 28 31 3 6 9 12 15 18 21 24 27 2 5 8 11 14 17 20 23
Project Schedule	55 days	Mon 1/9/17	Fri 3/24/17		1
Material Preparation	1 day	Mon 1/9/17	Mon 1/9/17		8
Mobilization	6 days	Mon 1/9/17	Mon 1/16/17		
Site Preparation	6 days	Mon 1/16/17	Mon 1/23/17		
Footings	23.5 days	Mon 1/23/17	Thu 2/23/17		
Steel Plate Assembly	14 days	Thu 2/9/17	Tue 2/28/17		
Rip Rap Backfilling	3 days	Wed 3/1/17	Fri 3/3/17		
Roadbed Creation	9 days	Mon 3/6/17	Thu 3/16/17		
Site Repair	1 day	Fri 3/17/17	Fri 3/17/17		8
Cleanup / Demobilization	5 days	Mon 3/20/17	Fri 3/24/17		

Conclusion

- Las Trancas needs a reliable structure over this stream crossing to keep transportation route open year-round
- Analyzed data collected on assessment trip, formed design constraints
- Flexible buried steel bridge best meets design constraints
- Detailed final design
 - Channel Design
 - Footing Design
 - Roadbed Design
 - Steel Structure Design
- Cost Estimate Project Schedule

Thank You!

